

Total No. of printed pages = 10

Sc-102/Maths-I/1st Sem(New)/Com/2017/N

MATHEMATICS - I

(New Course)

Full Marks – 70

Time – Three hours

**The figures in the margin indicate full marks
for the questions.**

PART - A

1. Choose the correct answer : $1 \times 10 = 10$

(a) Square root of $3 + 4i$ is

(i) $\pm (4 + i)$ (ii) $\pm (1 + i)$

(iii) $\pm (2 - i)$ (iv) $\pm (2 + i)$

(b) Modulus of $\frac{2-i}{3-4i}$ is

(i) $\frac{1}{5}$ (ii) $\frac{1}{\sqrt{5}}$

(iii) $\sqrt{3}$ (iv) 5

[Turn over

(i) Expansion of $(1 + x)^{-1}$ is

- (i) $1 - x + x^2 - x^3 + x^4 - \dots \dots$ to infinity
- (ii) $1 + x + x^2 + x^3 + x^4 + \dots \dots$ to infinity
- (iii) $1 - x + x^2 - x^3 + x^4 - \dots \dots + x^n$
- (iv) $1 + x + x^2 + x^3 + x^4 + \dots \dots + x^n$

(j) Cofactor of a_{23} in $\begin{vmatrix} 2 & -1 & 0 \\ 1 & -2 & 1 \\ 4 & 3 & -1 \end{vmatrix}$ is

(i) $\begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix}$

(ii) $-\begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix}$

(iii) $-\begin{vmatrix} 2 & -1 \\ 4 & 3 \end{vmatrix}$

(iv) $\begin{vmatrix} 2 & 0 \\ 4 & -1 \end{vmatrix}$

2. Choose the correct statement : $1 \times 5 = 5$

(a) (i) $\sin^2 x + \cos^2 x = 1$

(ii) $\sec^2 x + \operatorname{cosec}^2 x = 2$

(iii) $\cos^2 x - \cot^2 x = -1$

(b) (i) $-1 < \cos x < 1$ (ii) $\cos x \leq 1$

(iii) $-1 \leq \sin x \leq 1$

$$(c) (i) 1 + \sin A = \left(\sin \frac{A}{2} + \cos \frac{A}{2} \right)^2$$

$$(ii) \cos A = 2 \sin^2 \frac{A}{2} + 1$$

$$(iii) 1 - \cos A = 2 \sin^2 \frac{A}{2}$$

$$(d) (i) \tan(a + b + c) =$$

$$\frac{\tan a + \tan b + \tan c - \tan a \tan b \tan c}{1 - \tan a \tan b - \tan b \tan c - \tan c \tan a}$$

$$(ii) \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

$$(iii) \tan(45^\circ + A) \tan(45^\circ - A) = -1$$

$$(e) (i) \frac{a}{\cos A} = \frac{b}{\cos B} = \frac{c}{\cos C}$$

$$(ii) \cos \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$

$$(iii) a = b \cos C + c \cos B$$

3. Find the correct answer :

$1 \times 5 = 5$

(a) The cost of digging a pit of size $4 \times 5 \times 4$ at the rate of Rs. 50 is

(i) Rs. 4,000 (ii) Rs. 2,000
(iii) Rs. 3,500 (iv) Rs. 3,650

(b) The length of the longest rod that can be kept in a box of size $3 \times 12 \times 4$ is

(i) 7.9 (ii) 8.2
(iii) 12.5 (iv) 13

(c) The volume of a sphere of radius 6 is

(i) 287π (ii) 346π
(iii) 410π (iv) 288π

(d) The base radius of a cone is 7. If the height of the pyramid is 24 cm, its lateral surface is

(i) 175π (ii) 174
(iii) 238π (iv) 188π

(e) The height of a cylinder is 6 cm and the ratio to its volume to the lateral surface area is 2 : 1. The radius is

(i) 4.5 (ii) 3
(iii) 4 (iv) 2.5

4. Choose the correct statement :

$1 \times 5 = 5$

(a) (i) Distance between $(4, 1)$ and $(3, 0)$ is $\sqrt{2}$.

(ii) Gradient of the line joining $(4, 1)$ and $(3, 0)$ is 2.

(iii) Origin is a point on the line joining $(4, 1)$ and $(3, 0)$.

(b) (i) Two lines are parallel if coefficient of y in the two equations are same.

(ii) Two lines are mutually perpendicular if product of their gradient is 1.

(iii) If constant term of an equation of a straight line is 0, then the line passes through the origin.

(c) (i) The x intercept of $2x - 3y + 1 = 0$ is 2.

(ii) The y intercept of $3x - y + 6 = 0$ is 6.

(iii) $2x - 3y + 1 = 0$ and $5x - 3y + 5 = 0$ are parallel lines.

(d) (i) The gradient form of the equation $2x + y = 4$ is $y = -2x + 4$.

(ii) The gradient form of the equation $5x + 2y = 1$ is $y = -5x + 1$.

(iii) The intercept form of the equation

$$x + y = 6 \text{ is } \frac{x}{6} - \frac{y}{6} = 1.$$

(e) (i) Equation of the line passing through (2, 1) and (4, 6) is $5x - 2y = 8$.

(ii) Equation of the line passing through (0, 0) and (1, 2) is $2x - y = 7$.

(iii) Equation of the line passing through (-3, 1) and (3, 3) is $x + 2y + 6 = 0$.

Part - B

5. Answer any *five* questions : $2 \times 5 = 10$

(i) Evaluate $\log_2 \log_3 \log_2 512$.

(ii) If $x = 1 - i$, find the value of $x^2 - 2x + 2$.

(iii) If ${}^n P_3 = 336$, find ${}^n C_3$.

(iv) Determine the value of k if $7k + 3, 4k - 5, 2k + 10$ are in AP.

(v) Find 8th term in $\left(1 + \frac{1}{x}\right)^{17}$.

(vi) Apply De Moiv's theorem to find the value $(1 + i)^2$.

(vii) In how many ways can the letters of the word MULTIPLE be arranged without changing the order of the vowels in the word ?

(viii) How many chords can be drawn through 11 points on a circle ?

6. Find the value of $(\sqrt{2}+1)^5 - (\sqrt{2}-1)^5$. 3

7. Answer any *two* questions : $4 \times 2 = 8$

(i) If ω is an imaginary cube root of unity, prove that $\frac{1}{1+2\omega} + \frac{1}{2+\omega} - \frac{1}{1+\omega} = 0$.

(ii) Insert 5 GMs between 576 and 9.

(iii) Prove that $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$

(iv) Resolve into simple fraction : $\frac{x^2}{(x+1)^2(x+2)}$

8. Prove that (any *four*) : $2 \times 4 = 8$

(i) $\sin^2 48^\circ + \sin^2 42^\circ = 1$

$$(ii) \tan 53^\circ = \frac{\cos 8^\circ + \sin 8^\circ}{\cos 8^\circ - \sin 8^\circ}$$

$$(iii) \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \sec \theta + \tan \theta$$

$$(iv) \cos^4 \theta - \sin^4 \theta = \cos 2\theta$$

$$(v) \cos 130^\circ + \cos 110^\circ + \cos 10^\circ = 0$$

$$(vi) \frac{\cos \theta + \cos \phi}{\sin \theta - \sin \phi} = \frac{\sin \theta + \sin \phi}{\cos \phi - \cos \theta}$$

$$(vii) \frac{\sin(B - C)}{\cos B \cos C} = \tan B - \tan C$$

9. Answer any *two* questions : $3 \times 2 = 6$

(i) If $A + B + C = \pi$, prove that $\sin^2 A + \sin^2 B + \sin^2 C = 2 + 2\cos A \cos B \cos C$

(ii) Prove that $\tan^{-1} \frac{5}{12} = \sin^{-1} \frac{5}{13} = \cos^{-1} \frac{12}{13}$

(iii) For the triangle ABC, prove that

$$\tan \frac{A - B}{2} = \frac{a - b}{a + b} \cot \frac{C}{2}$$

10. A river is 32m wide. The depth d in meters at a distance x m from one bank is given by the following table :

x :	0	4	8	12	16	20	24	28	32
d :	0	10	20	25	30	41	44	26	10

Find the approximate cross-section of the river. 3

11. Answer any *two* questions : $2 \times 2 = 4$

- (i) Show that $(-1, -1)$, $(1, 1)$ and $(-\sqrt{3}, \sqrt{3})$ are the vertices of an equilateral triangle.
- (ii) Divide the line joining $(-1, 1)$ and $(6, 8)$ internally in the ratio $2 : 1$.
- (iii) Find locus of a point moving at a constant distance 3 from $(4, 1)$.
- (iv) Find the length of perpendicular from $(0, 0)$ to $x - 5y - 9 = 0$.

12. Find the angle between the lines $x + 2y - 1 = 0$ and $6x + 5y - 3 = 0$. 3

Or

Show that the points $(2, 3)$ $(3, 5)$ and $(6, 11)$ are collinear.